

(1) Simplify:
$$\frac{4x}{\chi^2} + 20 = \frac{4(\chi+5)}{(\chi+5)(\chi-5)} = \frac{4}{\chi-5}$$

(2) Simplify: $\frac{4x}{\chi^2} - 25 = \frac{4(\chi+5)}{(\chi+5)(\chi-5)} = \frac{4}{\chi-5}$
(2) Simplify: $\frac{4x}{\chi^2} - 25 = \frac{4(\chi+5)}{(\chi+5)(\chi-5)} = \frac{4}{\chi-5}$
(2) Simplify: $\frac{4x}{\chi^2} - 25 = \frac{4(\chi+5)}{(\chi+5)(\chi-5)} = \frac{4}{\chi-5}$
(2) Simplify: $\frac{4x}{\chi^2} - 25 = \frac{4}{\chi-5}$
(2) Simplify: $\frac{4x}{\chi-5} - \frac{4}{\chi-5}$
(3) Simplify: $\frac{4x}{\chi-5} - \frac{4}{\chi-5}$
(4) Simplify: $\frac{4x}{\chi-5} - \frac{4}{\chi-5}$
(5) Simplify: \frac{4x}{\chi-5} - \frac{4}{\chi-5}
(5) Simplify: \frac

(3) Divide:
$$\frac{15x+5}{3x^2-14x-5}$$
; $\frac{15}{3x-12}$
= $\frac{5(3x+1)}{(3x+1)(x-5)}$; $\frac{3(x-4)}{3x5}$ = $\frac{x-4}{x-5}$
(4) Subtract: $\frac{2y+7}{y^2-9}$; $\frac{y^2-9}{y^2-9}$
= $\frac{2y+7-y-4}{y^2-9}$ = $\frac{x+5}{(y+5)(y-3)}$ = $\frac{1}{y-3}$

(5) Simplify:
$$\frac{5}{\chi^2 + 6\chi + 5} - \frac{3}{\chi^2 - 25}$$

= $\frac{5(\chi - 5)}{(\chi + 5)(\chi + 1)(\chi - 5)} - \frac{3(\chi + 1)}{(\chi + 5)(\chi - 5)(\chi + 1)}$
= $\frac{5(\chi - 5) - 3(\chi + 1)}{(\chi + 5)(\chi + 1)(\chi - 5)} = \frac{5\chi - 25 - 3\chi - 3}{(\chi + 5)(\chi + 1)(\chi - 5)} = \frac{2\chi - 28}{(LO)}$
(6) Solve: $\frac{5\chi}{\chi + 2} + 3 = \frac{4\chi - 6}{\chi + 8} + 3(\chi + 2) = 4\chi - 6}{\chi + 8} + 3(\chi + 2) = 4\chi - 6}$
LCD= $\chi + 2$, E.V. -2 $\chi + 2$ $\chi + 2$ $\chi + 2$ $\chi + 3\chi + 6 = 4\chi - 6$
LCD= $\chi + 2$, E.V. -2 $\chi + 2$ $\chi + 2$ $\chi + 2$ $\chi + 2$ $\chi - 3$
 $\chi + 2$ $\chi + 2$ $\chi - 3$ $\chi + 2$ $\chi - 3$ $\chi -$

Solve:
$$5 \times 3$$

 $x+1 \times 2 = 2$
 $E(0) = (x+1)(x-2)$
 $E(x-2) = 3(x+1)$
 $5(x-2) = 3(x+1)$
 $5x - 10 = 3x + 3$
 $5x - 3x = 3 + 10$
 $x = \frac{13}{2}$
 $x = \frac{13}{2}$

Solve
$$\chi + 5 = \frac{6}{\chi}$$
 $L(D = \chi$
 $\chi^{2} + 5\chi = 6$ $0 = 1$ $b = 5$, $C = -6$
 $\chi^{2} + 5\chi - 6 = 0$ $b^{2} - 40C = 5^{2} - 4(1)(-6)$
 $(\chi + 6)(\chi - 1) = 0$ $= 25 + 24$
 $\chi = -6 - \chi = 1 - \chi = \frac{-5 \pm \sqrt{49}}{2(1)} = \frac{-5 \pm 7}{2}$
 $\chi = -6 - \chi = 1 - \chi = \frac{-5 \pm \sqrt{49}}{2(1)} = \frac{-5 \pm 7}{2}$
 $\chi = \frac{-5 + 7}{2} = \frac{-2}{2} = 1$
 $\chi = \frac{-5 - 7}{2} = \frac{-12}{2} = -6$

Solve
$$10x = 7 - \frac{1}{x}$$

 $Ext{rest} = 0$
 $10x^{2} = 7x - 1$
 $10x^{2} = 7x - 1$
 $10x^{2} - 7x + 1 = 0$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $x = \frac{1}{2a}$
 $x = \frac{-(-1) \pm \sqrt{9}}{2(10)}$
 $b^{2} - 4ac = (-7)^{2} - 4(10)(1)$
 $= 9$
 $x = \frac{7 \pm 3}{20} = \frac{10}{20} = \frac{1}{2}$
 $x = \frac{7 \pm 3}{20} = \frac{4}{20} = \frac{1}{5}$
 $x = \frac{7 \pm 3}{20} = \frac{10}{20} = \frac{1}{2}$

Solve
$$2 - \frac{1}{x} = \frac{4}{x^2}$$

 $2x^2 - \frac{1}{x} \cdot \frac{1}{x} = \frac{4}{x^2}$
 $2x^2 - \frac{1}{x} \cdot \frac{1}{x} = \frac{4}{x^2}$
 $2x^2 - \frac{1}{x} = 4$
 $2x^2 - \frac{1}{x} = \frac{1}{4} = 4$
 $x = \frac{1}{4} + \frac{9}{4} = \frac{16}{4} = 4$
 $x = \frac{1}{4} + \frac{9}{4} = \frac{16}{4} = 4$
 $x = \frac{1}{4} + \frac{9}{4} = \frac{16}{4} = 4$
 $x = \frac{1}{4} + \frac{9}{4} = \frac{16}{4} = 4$
 $x = \frac{1}{4} + \frac{9}{4} = \frac{16}{4} = \frac{1}{2}$

Basic Math
Simplify:
$$\frac{\frac{1}{2} - \frac{1}{3}}{\frac{1}{6}} = \frac{3 \cdot \frac{2}{5} - \frac{1}{5}}{\frac{1}{5}}$$

LCD = 6
 $= \frac{3 - 2}{1} = \frac{1}{1} = 1$
Simplify: $\frac{1 - \frac{3}{2}}{2} = \frac{2 \cdot 1 - \frac{1}{2}}{\frac{1}{2}} = \frac{1}{2}$
LCD = $\frac{1 - \frac{3}{2}}{2} = \frac{2 \cdot 1 - \frac{1}{2}}{\frac{1}{2}} = \frac{2}{2}$

Simplify:
$$\frac{\chi}{4} - \frac{4}{\chi} = \frac{4\chi}{\chi} - \frac{4\chi}{4} - 4\chi + \frac{4\chi}{\chi} - 4\chi + \frac{4\chi}{\chi} - 4\chi + \frac{4\chi}{\chi} - \frac{4\chi}{\chi} + \frac{4\chi}{\chi} - \frac{4\chi}{\chi} + \frac{4\chi}{\chi} - \frac{4\chi}{\chi}$$

Simplify
$$1 + \frac{4}{\chi} + \frac{4}{\chi^2}$$

 $1 - \frac{4}{\chi^2}$
 $1 - \frac{4}{\chi^2}$
 $2 - \frac{\chi^2 + 4\chi + 4}{\chi^2 - 4}$
 $= \frac{(\chi + 2)(\chi + 2)}{(\chi + 2)(\chi - 2)} = \frac{\chi + 2}{\chi - 2}$

October 17, 2017

$$\begin{aligned} \text{Simplify:} \quad 5x^{-1} - 2y^{-1} & \frac{5}{x} - \frac{2}{y} \\ 25x^{2} - 4y^{-2} & \frac{5}{x^{2}} - \frac{4}{y^{2}} \\ 25x^{2} - 4y^{-2} & \frac{25}{x^{2}} - \frac{4}{y^{2}} \\ \text{L CD} = x^{2}y^{2} \\ x^{2}y^{2} \cdot \frac{5}{x} - x^{2}y^{2} \cdot \frac{2}{y} \\ x^{2}y^{2} \cdot \frac{25}{x} - x^{2}y^{2} \cdot \frac{4}{y^{2}} \\ \frac{7}{x^{2}}y^{2} \cdot \frac{25}{x^{2}} - x^{2}y^{2} \cdot \frac{4}{y^{2}} \\ = \frac{x y (5y - 2x)}{(5y - 2x)(5y + 2x)} = \frac{x y}{5y + 2x} \end{aligned}$$

Unfinished Problem from yesterday

$$\frac{1}{x} + \frac{1}{x+1} = \frac{3}{2} \qquad LQ = 2x(x+1)$$
E.N.: 0,-1

$$2x(x+1) \cdot \frac{1}{x} + 2x(x+1) \cdot \frac{1}{x+1} = 2x(x+1) \cdot \frac{3}{x}$$

$$2(x+1) + 2x = 3x(x+1)$$

$$2x + 2 + 2x = 3x^{2} + 3x$$

$$4x + 2 = 3x^{2} + 3x$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

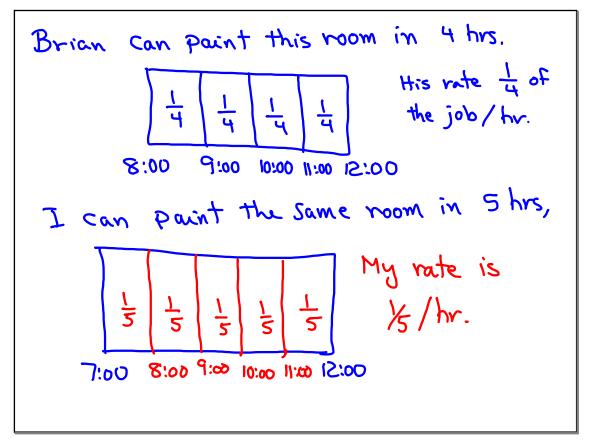
$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$


$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{2} + 3x - 4x - 2 = 0$$

$$3x^{$$

How long does it take to paint the room
working together?
work = How long · How fast
= time · Rate

$$\frac{1}{4} \cdot t + \frac{1}{5} \cdot t = 1$$

work by work by work
Brian me r9t=20
 $\frac{1}{4} \cdot \frac{1}{5} = 1$
 $L^{CD}=20$
 $t = 20$
 $t = 20$
 $t = 20$
 $t = 20$

Pipe A can fill up a pool in 6 hvs.
Pipe B - - - - - 10 hrs.
How long if they work together?
Pipe A 6 hvs
Rate
$$\frac{1}{6}$$

Pipe B 10 hvs Pipe A Pipe B
Rate $\frac{1}{6}$ to $\frac{1}{10}$ to $\frac{1}{6}$ to $\frac{1}{10}$ to $\frac{1}{6}$ to $\frac{1}{10}$ to $\frac{1}{6}$ to $\frac{1}{10}$ to $\frac{1}{10}$ comp.
Rate $\frac{1}{10}$ to $\frac{1$

Solve
$$\frac{t}{3} - \frac{t}{5} = 1$$

LCD = 15
Saucet can fill up the Sink in 3 mins.
Drain can empty the Sink in 5 mins.
If Saucet is running, and drain is left
open, How long does it take to fill up the
Sink? $\frac{1}{3} \cdot t - \frac{1}{5} \cdot t = 1$
Faucet Drain Job
 $t = 7.5$
T.5 minutes.

It takes Ana 18 minutes longer than Joe
to do a job.
Together, they can do it in 12 minutes.
How long if they work alone?
Joe
$$\rightarrow \chi \rightarrow \frac{1}{\chi}$$
 $\Rightarrow Solve$
Ana $\rightarrow \chi + 18 \rightarrow \frac{1}{\chi + 18}$ $\Rightarrow Solve$
Ana $\rightarrow \chi + 18 \rightarrow \frac{1}{\chi + 18}$ $\Rightarrow Solve$
Ana $\rightarrow \chi + 18 \rightarrow \frac{1}{\chi + 18}$ $\Rightarrow Solve$
 $\frac{12}{\chi} + \frac{12}{\chi + 18} = 1$
 $1 \cdot 12 + \frac{1}{\chi + 18}$ $= 1$
 $1 \cdot 12 + \frac{1}{\chi + 18}$ $= 1$
 $1 \cdot 12 + \frac{1}{\chi + 18}$ $= 1$
 $1 \cdot 12 + \frac{1}{\chi + 18}$ $= 1$
 $1 \cdot 12 = 1$ $= 1$
 $1 \cdot 12 + \frac{1}{\chi + 18}$ $= 12 \cdot 12 + 18$
 $12 \cdot 12 + 18 \times -24 \times -216 = 0$
 $\chi^2 - 6 \times -216 =$

It takes wilson 3 times longer than
Roger to do a job.
Together, they can do it in 2 hrs.
How long if they work alone?
Roger
$$\rightarrow \chi \rightarrow \frac{1}{\chi}$$
 $\frac{1}{\chi} \cdot 2 + \frac{1}{3\chi} \cdot 2 = 1$
Wilson $\rightarrow 3\chi \rightarrow \frac{1}{3\chi}$ Roger Wilson
Solve $2\chi + \frac{2}{3\chi} = 1$ $\rightarrow 8 = 3\chi$
 $LCD = 3\chi$ $6 + 2 = 3\chi$ $\chi = \frac{8}{3}$
 $Roger \frac{8}{3}$ hrs, Wilson 8 hrs

Ashley takes 3 times longer than taylor. Together -> 21 Days. $\frac{1}{\chi} \cdot 21 + \frac{1}{3\chi} \cdot 21 = 1$ How long alone? Solve $\frac{7}{21} + \frac{21}{3x} = 1$ Taylor -> x -> 1/x Ashley $\rightarrow 3\chi \rightarrow \frac{1}{3\chi}$ $\frac{21}{x} + \frac{7}{x} = 1$ 21+1=X $28 = \chi$ LCD=X Taylor 28 Days Ashley 3(28)= SH Days